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Abstract

This paper introduces a trellis coded modulation (TCM)
scheme for non-coherent muipile full response M-ary
CPFSK with modulation index1 M. A proper branch. met-
ric for the trellis decoder1s ‘obfained »y émpioyinga simple
aproxnmlat;lon.of the modified Bessel i;'mntmn for large sig-
nalto noise ratio (SNe%)' Pairwise error _probability of coded
sequences is evaluated by, applying a linear approximation
to the Rigian random variable. Examples_are Qbresented for
trellis codings of non-coherent binary CPFSK by using the
Ungerboeck's set partitioning method. Agtymlptotic upper
bounds on bit error probability are evaluafed for the glven
coded systems, and simulation results are also presented.

1 Introduction

Trellis Coded Modulation (TCM) [1] is developed to gbtain
c_odmlg rFam without increasing bandwidth. Also multidimen-
sional TCM [2], [3] and Multiple TCM [4] are developed for
power and bandwidth efficiency. These ‘schemes areorigi-
ng)’ aevereloped for a coherent “modulation system. T
appuéanoto multiple symbol differential phase’shift keying

DPSK) can be found in[5]. The paper [6] considers the
multiple ull response continuous g‘na)s frequéncy shift klég’-
ing with non-co herent detection. This )’aﬁ\?r t.reduces the
e? ivalent normalized squared distance (ENSD). The ENSD
of non-coherent system plays the same role as the normalized
squared Euclidean distance of coherent system for evaluating
the bit error probability. .

We show that a combination of a trellis encoder and a non-
coherent N-consecutive M-ary CPFSK can potentiallyyield
a significant improvement in_performance,. even for small N,
over the uncoded f{estem_., For the analusis we use a linear
approximation for te Rician random variable to evaluate the
palrwise error probability. We show that thiparrwise error
probability of oded sequences can be expresaed as a function
of the sum of EINSDs. e ‘introduce the equivalent squared
free distance, d ,,.., {(which represent the smallest distance
between coded” séquences leaving from the same tr%llis state
at a given time and remerging again later on). d: Jrecls @
designingtoo| for the trellis encoder with a non-coherent sys-
tern ‘as the Euclidean sauared free distance is for a coherént
system. .

2 System Model for TCM

Figure 1 is a simplified block diagram of system un-
der Tnvestigation. Input bits, b,,, occurring at a rate Rs,
are passed throug) a trellis encoder ‘with' codé rate r, pro-
ducing an encadeed bit stream ¢, at a rate, R, = rR,.
These encoded bits. ¢m, are converted to a sequUENce, Um =
Um0, Y 1y« « - Umn N_lé' where um, € {0,1,2,...,M —1}.
e N-dYmensional vector. U .. is.4d into an N -consecutive
continuous phase encoder’ N"f(_fPE) (7], where the state of
NCPE, s denoted by V,,. Thé outpuf 18 mapped into an

Jet. Propulsion Laboratory®
Cdlifornia Ingtitute of Technology
Pasadena, CA 91109

Bawy
——{ b ——-i w0 Nog o Mooy |
(b.) L "u) M- {u,) Mloxcha batcrr )

Figure 1: Block Diagram of the Trellis Coded Non-coherent
N-consecutive M-ary CPFSK system

N-consecutive M-ary?PESK waveform. This generation of
CPFSK' 1s explaine m 7]. .

We assume that an arbitrary phase offset,. 6,,, introduced
by the channel during. the réception of u,,1s constant and
uniformly_ distributed m [0, 27r). Furthermore the sequence
of random variables are ‘assumed to be indepndent (This
assumption’ 1s vaid if interleavig aind deinterdeavirgs used
after trellis encoder and before the Viterbi algorit hn). At
the receiver, the noise corrupted signal is non-coherentlw de-
tected, and the resultirg computed metrics, denoted Iﬁ(’)l,
are then used for thérancivalues of the trellis. For co-
herent detection, a metric based_on mimmmizing the squared
Euclidean distance between received and transmitted wave-
forms, is optimum in the sense of a minimum probability of
error._segquence. For non-coherent detection, by the suitable
modification, the appropate metric can boe interpeted as
an equivaent normalized squared distance (ENSD).

We denote a coded symbol sequence of length L corre-
sponding to the output sequence of trellis encoder, u =
(uo,uy,...,ur-1), where the m + 1st element of u is um =
Um,0,%m,1,--.,¥m N-1). The state of NCPE, vV, , and
the input vector, u,,, which specify a transmitting N-
consecutive M-ary CPFSK waveform during the mth time
interval [mT,, (m -t- 1)Tx)where TN = NT and T is the
duration of each coded symbol. The complex received base-
band signal #(t) can be represented aa #(r + mTn)=35(7 +
mTN, um)el® + ii(r) where

(r + mTN,um)éAeJeN('*"‘TN'“'") (1)
and
2/ Uy .
PR 7 f 0<T<T,
M k=1

e

if iT=a ¥m(q & T, ()
L fori=1,2,---,N —1.

ON(T + mTw,um) =

Observe that if we assume non-coherent_ detectjon, thePlage
information will not ig»exist at the receiver. The Vitepi al-
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..gorit'hm can be implemented with the same number of states
as required for the trellis encoder.

The conditional probability of #(t) over the interval
[0, (L —1)Tw), given an input sequence of length L, u, and
carrier phase offsets, oo, 8y, ..91_1, can be expressed ss

Po(7(8)]u, 80,01, .., B—1) 3)
L-1 1 Twn
= ¢ [[ewi-5]  fr-l-mD)

§(r + an,um)eje“|2dr}
which can be expressed in a simplified form

P'(;(t)lungVOh~-'10L-1) (4)
— Ce—A’LTN/No

L T
aCr N INLCTED

L-—-1

2A
exp{=~-1Bm| cos(fm — arg 3))
":E[o Na T
where
TN )
Bm - / F(r + mTy)e /O NIdmIN um) g, (5)
]

Averaging (5) over ooo1, .., fL-1, (assuming interleaving
and deinterleaving is used) we get

=24

~(F = I (=1Bml), 6

P-(#(t)lu) FmI.Io o(5; 18mi) (®)

where F is a constant which is independent of input sequence

u. An exact evaluation of (6) in a closed form is difficult if

not impossible. To get decision statistic which can be used to

implement the Viterbi algorithm, we have employed a simple

approximation of the modified Bessel function 10 for large
SNR as follows:

- In Io(z) = |=|. (7
Therefore the decision variable behaves as
L-1
LFB)u) = Y |Bml- (8)
m=0

Thus, the appropriate decision rule for the coded sequence
u is the following:

choose 1t = U" asthe coded sequence if 9

"5 (3 16mD)

mm0

L1 TN ) .
= 2| / F(r + T )e OV HmIN vl dry,
- (]

m=0

where u“ = (ug, u:,... ,4}_y)- The decision metric in (10)
can also be use%for no rimf’erl@avmg case which results m a
suboptimum metric.

3 Evaluation of an Upper Bound
on the Bit Error Probability

An error event of length L can be described by considering
two L-tuples of coded symbols. Let uz = (4o, %, ... ur_y)

denote transmitting L-tuple and @z = (fo,%1,. .. Gr-1) de-
note another L tuple. Each component of ug and @ con-
sists of N coded symbols. An error event with length L
occurs when demodulator chooses, instead of transmitted
sequence ugz, another sequence UL of channel symbols cor-
responding trellis path that splits from the correct path at
a given time, and remerges exactly L discrete times later,
The union bound provides the following inequality for the
bit error probability:

O£ ST, 08P 00 01 ) 0

“L=0

where P (u_—u g is the pairwise error probability and
b denotea the number of information bits transmitting ev-
ery TN sec. and w(ur,uz) denotes the hamming distance
between two binary sequences corresponding to ugz and ur.

To find the upper bound on bit error probability in (10),
we must first find the pairwise error probability which rep-
resent the probability of choosing the coded sequence @r =
(9, ¥1, .-+, #L-1) instead of ur = (ug, 1, ., .,ur—1). Let
[Bm| denote the maximum likelihood metric for the m + 1st
trellis branch of the correct data sequence, computed from
(5). Then the pairwise error probability is given by

L—1 L-1
Pr(ur—2) = P37 1Bl > D 18mlluz). (1D
m=0 m=0

Here, |Bm| denotes the metric computed for the data se-
quence associated with the m+ 1st trellis branch of the incor-
rect path. To evaluate (11), we use a linear approximation.
Random variable By, can be expressed as

Bm = ATu'™ -|- A, (12)

where L
ulm = %A ?OrtmIn.Bum) g, (13)

and Aup, = Uy, — 4,,. We denote the zero mean complex
Gaussian random variable, 12, as follows;

™
iz = / fi(r + mTy e /ON(THmTn dn) o (14)
0

A
For large SNR we can make a linear approximation for [Bm |
as follows:

A ung 4 un nany
B = ATl 14+ SRR T
~ ATlu| } [+ “—'zl————}]*ul';ﬁ
1 .~ -8
= AT|u| + m(“ 2 + uiiz ). (15)

Similarly approximation forl[},ﬁ can be obtained by setting
Au,, = O which results in u'™ = N and using this in the
above expression. Lo s Lo

The statistic of 3, 2o18m|— Y me=o!Bm| can be evaluated

approximately aa a Gaussian random variable. Define a new
random variable Y as

L1 L-1
Y23 1Bl - D 1Bml. (16

mm=0 m=0



Table 1: Set Partitioning of 2-consecutive Binary CPFSK

level Partitioniag A Partitioning B ENSDs min, ENSD
1 (0,1) X (0,1) | (0,1) x(0,1) | 14516540 1.45
2 0 (o, 1) (0,1)x0 1.63 1.63
1 x (0,1) (0, Dx1 ]

Then Y can B2 approtiaitéaasa sum of independent Gaus-

sian rand(;,,? variables. We now . .
variance o3, of Y as follows, the mean, Y, and

L-1
Y = > AT(N - [ui™), (17)
and m=e
L-1
op = E NoT(N - lu(m)|)~

m=0

Therefore we can rewrite (11) as

P.(ur —»GL) = P(Y < Ojug) (18)
e (AT Zme WV - W™D

NoT Topiso (N - Julm)])

L-1
=Q( \"1%; D (N —jutmiy)

m=0
£ L-1
= Q| 33 Zod%,m)
where
d2 2 2(N - Jul™)). (19)

. Bhe equivalent normalized squared distance, dg',,,, defined
in, ‘19), plays the same role as the normalized squared Eu-
chi listance of coherent detection for evaluating the error
probability 6f ‘the coded case as well as the uncoded case.

-4 Design of Trellis Encoder

It is our goal in this section to design a trellis encoder
shown_ in Figure 1 so that we can get the smallest error
probability. As we discussed' m the previous section, the
pairwise symbol error probability of trellis coded sequences
can be expr as a function of the _accumulgj;ed NSD.
We define the equivalent squared free distance , -d; ,,., which
plays the same role aa the squared Euclidean freg distance
m ‘coherent detection ¢, . reresents the smallest value
of the accumulated ENS 's‘_Between sequences. Therefore we
should find the encoder having the largest, a; free TO pUrsue
this goal we use Ungerboeck’s set partitioning approach and
computer search.

4.1 2-consecutive Binary CPFSK with Modu-
lation Index 1/2

We use the set partitioning métnd for the set of wave-
forms of 2-consecutive binary K. Each waveform js de-
noted by a two dimensiona vector urn = (Um,0,%m,1): AsS
shown m Table 1 we use two level of partitioning. Each
subset is denoted DY the Cartesian product. "The sé of vec-
tors m level’ I 18 parlitioned mto 2 subsets of size 2.

Modulay [
p(u.r._.. Y.)

Figure 2: General Representation of Trellis Encoder in Sys
tematic Feedback Form with a Code Rate 1/2, Cascadedto
2CPE of Binary CPFSK

The generation of binary CPFSK is expiained in two
stages, a 2-consecutive. phasé encoder 2CPE and a memo-
ryless modulator (MM)as shown m Figure 2. There are two
binary ‘input ines 1 ZPE. Therefore 1t 1s possible to design
a binary convolutional. encoder with a code rate 1/2, cas-
caded with 2CPE. We implement this convoluticnal encoder
m %SBmatxc feedback form. We write an i r&g)ut sequence,
b'(D),and_an output sequence, o’ (D) for 3 = O, 1,in polyno-
mial ‘notation, Here Dhs a 818y opeérator. The information
sequeance 1s ¢l (D) = bl(D) and the apay check sequence,
cﬁq, is a function of itself and blwq The parity check
equation of an encoder describes the melation in time of the
encoded bit streams. For an encoder with a code rate 1/2,
the parity check equation 'is

H(D)C(D) = O(D) (20)
where
H(D) = [Hi(D), Ho(D)] (21)
is a parity matrix, and
C(D) = [¢"(D), comy (22)

is an output sequence vector. We define the constraint length,
u, to be the maximum degree of al the parity check polyno-
mials H? (D) for j = O, 1.

To search for good codes we implement the parity check
polynomial m the following form:

Hi(D) = hl.D'+4hl_\D'"1+---+hi+0,
Ho(D) = A2-DY4hS_ D"~ 4...4 a4+ 1. (23)

We asﬂgg level 2 subset in Set Partitionin% A of Table 1 to
the paths leaving the same state of the trellis correspond-
ing'vothe trellis ‘encoder. This assignment ensures that the
ENSD between paths leaving a gven state is at least 1.63.
This condition 1s implemented >y the connection between
the outputs of the systematic convolutional encoder and the
inputs of 2CPE a&'ollows’ 2z to Zm,feacre~litragy,, . Theny
fore the state of the ng{at most memory element of the torelhs
encoder 18 decided by as shown m Figure 2, where A3 = 1
and hl = O. The exhaustive search to find ‘the remaining
coefficients of H? (D) for 2] =", 1, to maximize the eguivalent
squared free distance , d,.... has been made by means of a
com?lu;er program. .

The results are presented m Table 2 for the number of con-
volutional encoders with number of states ran & from 2 to 16
states, Only one solution haa been reported. ior 0,3‘3655 where
more than one trellis encoder results m maximum-d,?, . If
the Set Partitioning B m Table 1 is used, the same ‘results
are obtained {vith” respect to, maximumd; ,,,). We have
only presented when Set Partitioning A" was™used.

0 evaluate the performance of co systems, we use two
dominant terms m (10) to get an asymptotic upper bound
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T?E,l-eg 2: Sgti"‘,‘%‘,)c"de Rate 1/2 Convolutional Encoder
samberofstates v ) [ h'’ h” ] :‘ free
2 1 [2 1] 3.258
4 2 (2 9] 4.887
8 3 (4 15] 6.341
16 4 (26 21] 7.970

Figure 3: Asympwtic Upper Bound on Bit Error Proba-
bilityand Simu_ation Results for 2, 4, 8, and .16 States
’I‘relf;s Coded 3y stems of Non-coherent 2-consecutive Binary
CPFSK with ue Rate 1/2

on bit error probability. With 2-state trellis encoder in Table
2, we obtain an asymptotic upper bound aa follows:

& &
7o)+ QUITSZx).
Observe that & = 1/2& because the code rate is 1/2. With

4-State trellis encoder in Table 2, we obtain an asymptotic
upper bound as follows:

P,<Q(0.815 (24

- & &b
Pb<2Q(1.223N;) + Q(1.5417V—6). (25)

With 8-state trellis encoder in Table 2, we obtain an asymp-
totic upper bound as follows:

&y
m)v
and finaly 16-state trellis encoder in Table 2, we obtain an
asymptotic upper bound as follows:

p, 22Q(1.585-1f,—") +2Q(1.629 (26)
0

27

. & &
2.5Q(1.993 =2
Py<2.5Q( W) +0375Q(2.268 e ).

Figure 3 siows as mgfcﬁc up per bounds and simulation
resul ts for 248 1 sellis coded non-coherent 2-
consecutive CPFSK. We can observe that simulation
result a .{)roaches the totr upper bound on bit error
probabnﬁ_ y for laige SINR. The dashed line represents the
asymptotic upzper ound on hit error probability of uncoded
non-coherent 2-consecutive CPFSK, by using an |-state r =
1 encoder. By emplgyf& trellis coding with a code rate 1/2,
we obtain {S'(SWE gains 0.5, 2.25,3.39 and 4.38 dB for 2,4,
8, and 16 s ateg respectively, based on the asymptotic upper
bounds at 10™° bit error probability, at aprice of reducing
the information rate by half.. The ‘dotted hne represents the
%sgmptot.ic bit error probability of MSK (coherent binary

FSK with modulation " index” 1/2).

Table 3: Set Partitioning of 3-consecutive Binary CPFSK

level | Set partitio aing ENSDs [ misimem ENSD

1 (0, 1) x {0, 1) x (0.1) 1.80, 3.18, 2.78, 1.80
4.0, 4.7)
3 0 X (0, 1) X 0, 1 X (0,1) X1 2.16, 4.0, 4.7) 2.18
TX (0, I X 1o T X {0, 1] %X 0 | 3.18, 3.78_4.73

4.73

3 4.73

Q
Q
1
1

KKK X
oloio|e
] if e

XXX x
{ofj~io

4.2 3-consecutive Binary CPFSK with modu-
lation index 1/2

~ Table 3 shows a set partitioning for the set of waveforms
with 3-consecutive binary KreeM =2and N = 3.
Each signal is denoted by a three dimensional vector u,, =
Um0, Um,1 Um..), Wheré un, € {O, 1}. We write the set of
vectors m't' he Cartesian proa’uct._ he set of eight vectors in
level 1 is successively partitioned into 2 and 4 subsets of size
4 and 2 respectively.

There are three binary input lines in 3CPE. Therefore it is
possible to design a binary convolutional encoder with a code
rate 2/3, cascaded with 3CPE. We implement this convolu-
tional encoder in systematic feedback form. We write the in-
put sequences, ¥ (D) for j = 1,2, and the output sequences,
¢? (D) for j = O, 1,2 in polynomia notation. Here D is a de-
lay operator. The information sequences are ¢’ (D) = 12(D)
for j =12 and the parity sequence, co (D), is a function of
itself and & (D) for j = 1,2. The parity check equation of
an encoder describes the relation in time of the encoded bit
streams. For an encoder with a code rate 2/3, the parity
check equation is

H(D)C(D) = o(D) (28)
where
H(D) = [H'(D), H(D), H°(D)] (29)
isa parity matrix, and
C(D) = [¢*(D),c"(D), Co(D) (30)

is an outpit sequence vector. We define the constraint length
v to be t he maximum dejg_;ree of all the parity check polyno-
mials H? (D) for j = O, 1,2.

To search for good codes we implement the parity check
polynomial in the following form:

H'(D) = B3D"+h2_,D*'+ .. .i-h} + 1,
H' (D) = hi D'+ hi_\D"' + ...4h! +o0,
Ho(D) = ASD*+hS_ D"t + . .4 hl+1. (31)

We assign each subset in level 2 in Table 3 to the paths
leaving tle same state of the trellis correspondléﬁ to the
trellis "encoder. This assignment ensures that the ENSD be-
tween paths leaving a given state is at least 2.18. This con-
dition is implemented by setting hj = 1 fory* = 0,2 and
Ll = O, Obsarve that subsets in level 2 are selected by the
value Of U, fR 1., Therefore the state of the right ‘most
memory element of the convolutional encoder 1sseect9d by
Um.q Paimn as shown in Figure 4 where A} = O and hg =1
forj = 03. ‘I’he exhaustive search to find t e remaining co-
efficients of H? (D) for j = O, 1, 2, which maximize‘the d Jreer
has been made by means of a computer program. The re-
sults are presented m Table 4 for convolutional encoderwith
the number of statea ranges from 2 to 16 states. Only one
solution haa been reported for cases where more than one
trellis encoder with maximum dg ,,.. was obtained.
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Figure 4: General Representation of Trellis Encockr 11 ao(’}'s-
tematic Feedback Form with a Code Rate 2/3, Cascaded
with 3CPE of Binary CPFSK

Table 4: Optimal Code Rate 2/3 Convolutional Encoder

Cascaded-—with-3CP

aumbarofstates \' - [h' hl h'] dz,]ree
) T [0 a3 3.083
2 2 36 7] 4.942
8 3 [1L 4 9 6.745
16 4 19 8 13l 7.965

To evaluate the performance of coded systems we use two
dommant terms in (10) to get an upper bound_on the bit
error probability. With" 2-stafe trellis encoder 1n Table 4, we
obtain an asymptotic upper bound as follows:

&
No’*
Observe that & = 2/3& because the code rate is 2/3. With

4-state trellis encoder in Table 4, we obtain an asymptotic
upper bound as follows:

Pb20.75Q(1.3287f,-"—) + Q(1.521 (32
0 R

. E . &b
. 1.647—)i- 0. 841—-).
P,<0.75Q(1.6 7N0)| 5Q(1.8 lNo
With 8-state trellis encoder in Table 4, we obtain an asymp-
tetic upper bound as follows:

(33)

Pb20.5Q(2.248—gi) +0.19 Q(2.374§—b—). (34)
No NO

With 16-state trellis encoder in Table 4, we obtain an asymp-
totic upper bound as follows:

&
Ny

Es

P,20.313Q(2.655-) + 0875 Q(2.7627).  (39)
0

FiFJre 5 shows asymptotic up er bounds and simulation re-
sults for 2,4,8 and"16 states treilis coded 2-consecutive binary
CPFSK systems. The dasher'iitie reprresents the asgrr(iiptotic
upper bound on bit error probabili| é/n of the uncoded non-
coherent 3-consecutive CP'3K. whictis obtairied "By using
r =1, I-state encoder, By employing trellis cod|§ with a
code rate , we obtair power ggains 1.68, 2.63, 3.97 an

de rate 2/3 bt 19 1.68, 2.63, J.97 and
4.69 dB. for 2, 4, 8, and 1 stat% respectively based on the
asymptotic upper bounds-a&t' T 0 bit error probability, but
we |ose theimfoormation rate by Z.3. The dotted hne’repre-
sents the as%r}nﬁtlx.th_c bit error proitabilit {)f MSK  (coherent
binary TF ith" modulation_index ¥2). Non-coherent
coded scheme with 8-state achieves better performance in
bit error probability than MSK at an expense of reducing
information rate by 2/3.

5 Discussion and Conclusion

We have obtained the coded system with non-coherent de-
tection which has better bit error probability than coherent

i ero probabitty

Figure 3: Asymptotic 'Upder Bound on Bit Error Probabil-
lé)am C ationrRBssuts for 3-consecutive Binary CPFSK
ombined with Code Rate 2/3 Convolutional Encoder

MSK at an expense of reducing the information rate by a

factor equal to the code rate. Furthermore we may achieve a

better system than coherent MSK m bandwidth "and power

efficiency %'cons:denng the trellis coding with 4-ary or 8-ary
ith larger number of states.

CPFSK 'w
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